Abstract
Bacterial isolates from petroleum refinery effluent were evaluated for growth in increasing doses of phenol and heavy metal ions. All the test organisms were able to grow in mineral salt medium with phenol concentration of 15.0 mM (≈ 1412.0 mg/l) except Pseudomonas sp. RBD3. Aeromonas sp. RBD4, Staphylococcus sp. RBD5 and Pseudomonas sp. RBD10 showed the highest tolerance to 15.0 mM of phenol followed by Corynebacterium sp. RBD7 while Escherichia coli RBD2 and Citrobacter sp. RBD8 showed the least tolerance to 15.0 mM of phenol. The minimum inhibitory concentrations (MICs) ranged from 1.0 mM for mercury and 4.5 mM for chromium, nickel, lead and copper. The bacterial strains were most susceptible to mercury toxicity. Viable counts of the organism on mineral salt-phenol agar showed a typical growth pattern for inhibitory substrate. The threshold concentration is 0.5 mM for Bacillus sp. RBD1, Escherichia coli RBD2, Bacillus sp. RBD6, Citrobacter sp. RBD8, Streptococcus sp. RBD9, Pseudomonas sp. RBD11 and Escherichia coli RBD12 and 1.0 mM for Pseudomonas sp. RBD3, Aeromonas sp. RBD4, Staphylococcus sp. RBD5, Corynebacterium sp. RBD7 and Corynebacterium sp. RBD10. The results suggest that microorganisms isolated from petroleum refinery effluent are potentially useful for detoxification of phenol impacted systems in the presence of heavy metals.
References
Akinbowale OL, Haihong P, Peter G, Barton MD. 2007. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Inter. J. Antimicrob. Agents 30: 177–182
Aleem A, Isar J, Malik A. 2003. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil .Biores. Technol., 86: 7 - 13.
Alves de Lima A., Pereira MP, Filho RGS, Hofer E. 2007. Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater. Rev. Latinoam. Microbiol., 49 (3 - 4): 68 -73.
Amor L, Kennes C, Veiga MC. 2001. Kinetics of inhibitionin the biodegradation of monoaromatic hydrocarbons in the presence of heavy metals. Biores. Technol., 78: 181 - 185.
Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S and Muralikrishnan V. 2006. Kinetics of high strength phenol degradation using Bacillus brevis, J. Haz. Mat., B129(1-3): 216 - 222.
Bruins MR, Kapil S, Oehme FW. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf., 45:198 - 207.
Buswell JA, Twomey DG. 1975. Utilization of Phenol and Cresols by Bacillus stearothermophilus strain Ph24. J.Gen. Microbiol., 87: 377 - 379.
Diya’uddeen BH, Wan Daud WMA, Abdul Aziz AR. 2011. Treatment technologies for petroleum refinery effluents: A review. Proc. Saf. Environ. Protection 89: 95 - 105.
El-Deeb B. 2009. Natural combination of genetic systems for degradation of phenol and resistance to heavy metals in phenol and cyanide assimilating bacteria. Malaysian J. Microbiol. 5(2):94 -103.
El-Sayed WS, Ibrahim MK, Abu-Shady M, El-Beih F, Ohmura N, Saiki H, Ando A. 2003. Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosc. Biotechnol. Biochem., 67(9): 2026 - 2029.
Emoyan OO, Ogban FE, Akarah E. 2005. Evaluation of Heavy metals loading of River Ijana, Nigeria. J. Appl. Sci. Environ. Manag., 10(2): 121 - 7.
Gurujeyalakshmi G, Oriel P. 1989. Isdoation of phenol-metabolizing enzymes in Trichosporon cutaneum. Arch. Microbiol., 130:54 -58.
Hassen A, Saidi N, Cherif M, Boudabous A. 1998. Resistance of environmental bacteria to heavy metals. Biores. Biotechnol., 64: 7 - 15.
Hernandez A, Mellado RP, Martinez J L. 1998. Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae. Appl. Environ. Microbiol., 64: 4317 - 4320.
Hidalgo A, Jaureguibeitia A, Prieto MB, Rodriguez-Fernandez C, Serra JL, Llama MJ. 2002. Biological treatment of phenolic industrial wastewaters by Rhodococcus erythropolis UPV-1. Enz. Microb. Technol.,31: 221 - 226.
Hill GA, Robinson CW. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotech. Bioeng., 17: 1599 -1615.
Hossein N and Hill GA. 2006 .Closure Effects on Oxygen Transfer and Aerobic Growth in Shake Flasks. Biotechnology and Bioengineering. 95: 34 -41.
Janke D, Pohl R and Fritsche W. 1981. Regulation of Phenol Degradation in Pseudomonas putida. Z. Allg. Mikrobiol., 21: 295 - 303.
Kahru A, Maloverjan A, Sillak H, Pollumaa L. 2002. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. ESPR-Environ. Scie. Pollut. Res. 1: 27 - 33.
Kamnev AA. 2003. Phytoremediation of heavy metals: an overview. In: M. Fingerman, R. Nagabhushanam (Eds.), Recent Advances in Marine Biotechnology. Volume 8: Bioremediation. Science Publishers, Inc., Enfield (NH, USA), pp. 269-317.
Kotturi G, Robinson CW, Inniss W.E. 1991. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 34: 539-543.
Kumar A, Kumar S, Kumar S. 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194 Biochemical Engineering Journal 22 (2005) 151 - 159.
Li JK and Humphrey AE. 1989. Kinetic and fluorimetric behaviour of phenol fermentation. Biotechnol Lett 11:177 - 182.
Monteiro AAMG, Boaventura RAR, Rodigues AE. 2000. Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor Biochemical Engineering Journal 6: 45-49.
Nakamura Y and Sawada T. 2000. Biodegradation of phenol in the presence of heavy metals. J. Chem. Technol. Biotechnol., 75: 137 - 142.
Nieto JJ, Fernández-Castillo R, Márquez MC, Ventosa A. Quesada E. Ruiz-Berraquerro F. 1989. Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol., 55(9): 2385 - 2390.
Nwanyanwu CE, Nweke CO, Orji JC. 2012. Growth responses of petroleum refinery effluent bacteria to phenol. J. Res. Biol., 3: 167 - 177.
Nwanyanwu CE and Abu GO. 2010. In vitro effects of petroleum refinery wastewater on dehydrogenase activity in marine bacterial strains. Rev. Amb. Agua. 5: 21 - 29.
Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE. 2007. Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl. Ecol. Envriron. Res., 5(1): 123 - 132.
Nweke CO, Mgbachi LC, Nwanganga C, Nwanyanw CE. 2006a. Heavy metal tolerance among hydrocarbon utilizing bacteria isolated from oil-contaminated soil. Nigeria J. Microbiol., 20(2): 1057 - 1065.
Nweke CO, Okolo JC, Nwanyanwu CE, Alisi CS. 2006b. Response of planktonic bacteria of New Calaber River to zinc stress. Afr. J. Biotechnol., 5(8): 653 - 658.
Obiukwu CE and Abu GO. 2011. Toxicity of phenol to bacteria isolated from a petroleum refinery waste treatment plant. Int. Sci. Res. J., 3: 10 - 14.
Otokunefor TV and Obiukwu C. 2005. Impact of refinery effluent on the physicochemical properties of a water body in the Niger Delta. Appl. Ecol. Environ. Res., 3 (1): 61 - 72.
Said WA and Lewis DL. 1991. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl. Environ. Micrbiol., 57:1498 - 1503.
Sa’idi M. 2010. Experimental studies on effect of Heavy Metals presence in Industrial Wastewater on Biological Treatment. Int. J. Environ. Sci., 1: 666 - 676.
Sandrin TR and Maier RM. 2003. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspectives. 111(8): 1093-1101.
Santos VL, Heilbuth NM, Linardi VR. 2001. Degradation of phenol by Trichosporom sp. LE3 cells immobilized in alginate. J. Basic Microbiol.,41:171-178.
Sevgi E, Coral G, Gizir AM, Sangün MK. 2010. Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils. Turk. J. Biol., 34: 423 - 431.
Silva AAL, Pereira MP, Filho RGS, Hofer E. 2007. Utilization of phenol in the presence of heavy metals by metal-tolerant nonfermentative gram-negative bacteria isolated from wastewater. Rev. Latinoam Microbiol., 49: 68 - 73.
Suleimanov RA. 1995. Conditions of waste fluid accumulation at petrochemical and processing enterprises and prevention of their harm to water bodies. Meditsina Trudai Promyshlennaia Ekologiia. 12: 31 - 36.
Wei G, Yu J, Zhu Y, Chen W and Wang L. 2008. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. Journal of Hazardous Materials 151(1): 111 - 117.
Worden RM, Subramanian R, Bly MJ, Winter S, Aronson CL. 1991. Growth kinetics of Bacillus stearothermophilus BR219. Appl. Biochem. Biotechnol., 28/29: 267 - 275.
Yang R and Humphrey AF. 1975. Dynamics and Steady Studies of Phenol Biodegradation in Pure and Mixed Cultures. Biotechnol.Bioeng.,17:1211 - 1235.
Copyright license for the research articles published in Journal of Research in Biology are as per the license given below
Creative Commons License
Journal of Research in Ecology is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0). (www.creativecommons.org)
Based on a work at www.jresearchbiology.com
What this License explains us?
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
This license is acceptable for Free Cultural Works. The licensor cannot revoke these freedoms as long as you follow the license terms.
[As given in the www.creativecommons.org website]
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.