Identification lethal and sub lethal concentrations (LC50) of Organophosphate (OP) pesticide Diazinon using an endemic species (Yucatan Molly, Poecilia velifera Regan 1914) as a potential biomonitor for the intensive agricultural activities of Southeaster

  • Francisco Ucan-Marin Aquatic Toxicology, Aquaponika Ltd. 126-340 Parkdale Ave. Ottawa Ontario, Canada K1Y 1P2
  • Víctor Cobos-Gasca Cuerpo Académico de Ecología Tropical, Depto. de Ecología. Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km. 15.5 Carretera Mérida-Xmatkuil, Yucatán, México
  • Roberto C. Barrientos-Medina Cuerpo Académico de Ecología Tropical, Depto. de Ecología. Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán. Km. 15.5 Carretera Mérida-Xmatkuil, Yucatán, México
Keywords: Agriculture, Diazinon, LD50, Yucatan Molly, Biomonitor, Yucatan Mexico, Ecotoxicology

Abstract

Organophosphate (OP) pesticides are commonly used in agriculture; this group of compounds includes very toxic chemicals. Diazinon (IUPAC name: O,O-Diethyl O-[4-methyl-6-(propan-2-yl)pyrimidin-2-yl] phosphorothioate, INN- Dimpylate) is used often in the Yucatan Peninsula, Mexico. Regular tropical rain-floods and the Yucatan’s karstic topography allow Diazinon to be incorporated quickly into the freshwater watersheds and other aquatic ecosystems surrounding agricultural areas. This dispersion process has various negative consequences for the aquatic ecosystems. In the present study we used the Yucatan Molly (Poecilia velífera) a native and endemic fish of Southeastern Mexico as a biomonitor for the first time to assess some of the basic gaps in the Diazinon toxicity data. 96 juvenile fish (fry) were exposed to two time exposure-observations; for acute (24 hours) and chronic exposures (10 weeks). Three Diazinon doses were added as follows: 0.01, 0.02 and 0.04 mg/l (and a duplicated control group). The results showed that the acute dosed group has 100% mortality. Fish exposed to a 0.01 mg/l did not have any observable effects. The LC50 value calculated during this experiment for Yucatan Mollies exposed to dissolve Diazinon is extremely toxic at 0.02 mg/L. These results confirm, that the sensibility of Poecilia velifera as a native bioindicator for pesticides; and compared with other published LC50 data appears to be the most sensitive. Further studies are recommended to continue the study on the Yucatán Molly physiology; this fish has the potential to become a reliable sentinel for the aquatic ecosystems in the Yucatan Area, Mexico.

References

Acosta-Maya A, Martínez-Cruz C, Orozco-Zebadua P, Roche-Cámara MF and Zetina-Moguel CE. 1997. Prueba de LC50 de diazinón comercial en camarones del género Penaeus de la Laguna de Chelem, Yucatán, México. Ingeniería (UADY). 1(3): 21-26.

Arufe MI, Arellano JM, García L, Albendín G and Sarasquete C. 2007. Cholinesterase activity in gilthead seabream (Sparus aurata) larvae: characterization and sensitivity to the organophosphate azinphosmethyl. Aquatic Toxicology. 84(3):328–336.

Bailey HC, Deanovic L, Reyes E, Kimball T, Larson K, Cortright K, Connor V and Hinton DE. 2000. Diazinon and chlorpyrifos in urban waterways in northern California, USA. Environmental Toxicology and Chemistry. 19:82-87.

Banaee M, Sureda A, Mirvaghefi AR and Ahmadi K. 2011. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology. 99(1):1–6.

Beauvais SL, Jones SB, Brewer SK and Little EE. 2000. Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout (Oncorhynchus mykiss) and their correlation with behavioral measures. Environmental Toxicology and Chemistry. 19(7):1875-1880.

Blackburn K, Derosa CH, and Stara J. 1988. Diazinón: efectos sobre la salud y el ambiente. Documento provisional. ECO/OPS/OMS. Metepec, México. 48-50.

Burkepile DE, Moore MT and Holland MM. 2000. Susceptibility of five non target organisms to aqueous diazinon exposure. Bull. Environ. Contam. Toxicol., 64(1):114–121.

Cabrera A, Pacheco J and Comas M. 1992. Contaminación del agua subterránea por prácticas agrícolas: el herbicida 2,4-D. En: Cocoyoc, Morelos, México : Memorias del VII Congreso Nacional de Ingeniería Sanitaria y Ambiental., 1-4.

Calta M and Ural MS. 2004. Acute toxicity of the synthetic pyrethroid deltamethrin to young mirror carp, Cyprinus carpio. Fresenius Environ. Bull., 13(11a):1179-1183.

Campbell WC. 1989. Ivermectin and Abamectin. Spring-Verlag, New York, NY. 212-223.

Castano A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersill C, Part P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C and Segner H. 2003. The use of fish cells in ecotoxicology the report and recommended of ECVAM workshop 47. ALTA 31(3);317–351.

Cobos-Gasca V. 1995. Diagnóstico del uso de insecticidas y herbicidas en el estado de Yucatán. Informe Técnico, Convenio SEP/DGICSA. 9-1-31-001;36- 43.

Cobos-Gasca V, Cabrera A and Chab JC. 1997. Residuos de diazinón en muestras de agua de pozos de la zona hortícola del estado de Yucatán. Ingeniería (UADY). 1(1) 27-31.

Collett D. 2003. Modelling binary data. Second edition, Chapman and Hall-CRC Press. Boca Raton. 254-256.

Courtenay WR Jr and Meffe GK. 1989. Small fishes in strange places: A review of introduced poeciliids. In: Meffe GK, Snelson FF Jr (eds), Ecology & Evolution of Livebearing Fishes (Poeciliidae). Prentice Hall, New Jersey, USA. 319-331.

Cox C. 1992. Diazinon fact sheet. J. Pestic. Reform. 12;30–35.

De Bruijn J and Hermens J. 1991. Uptake and Elimination kinetics of organophosphorus pesticides in the guppy (Poecilia reticulata): Correlations with the Octanol/Water Partition Coefficient. Eviron. Toxicol. Chem. 10(6);791-804.

De Marco JH, Heard DJ, Fleming GJ, Lock BA and Scase TJ. 2002. Ivermectin toxicosis after topical administration in dog-faced fruit bats (Cynopterus brachyotis) Journal of Zoo and Wildlife Medicine. 33(2);147–150.

Dias-Assis CR, Guedes-Linhares A, Melo-Oliveira V, Penha- França RC, Matoso EV, Carvalho M, Souza- Bezerra R, Bezerra de Carvalho Jr L. 2012. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Science of The Total Environment. 441(15);141-150.

Finney DJ. 1971. Probit analysis. Third Edition, Cambridge University Press. 310-315.

Fujii Y and Asaka S. 1982. Metabolism of diazinon and diazoxon in fish liver preparations. Bull. Environ. Contam. Toxical. 29(4);445-460.

Girón-Pérez I, Santerre A, Gonzalez-Jaime F, Casas-Solis J, Hernández-Coronado M, Peregrina-Sandoval P, Takemura A and Zaitseva, G. 2007. Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish & Shellfish Immunology. 23(4):760-769.

Hammer O, Harper DAT and Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4(1):9 pages.

Hankison SJ, Childress MJ, Schmitter-Soto JJ, Ptacek MB. 2006. Morphological divergence within and between the Mexican sailfin mollies, Poecilia velifera and Poecilia petenensis. Journal of Fish Biology. 68;1610–1630.

Hogan JW and Knowles CO. 1972. Metabolism of diazinon by fish liver microsomes. Bull. Environ. Contam. Toxicol. 8(1):61-64.

Keizer J, D’Agostino G, Nagel R, Volpe T, Gnemi P and Vittozzi L. 1995. Enzymological differences of AChE and diazinon hepatic metabolism: correlation of in vitro data with the selective toxicity of diazinon to fish species. The Science of the Total Environment. 171(1-3):213-220.

Kuehl RO. 2001. Principios estadísticos para el diseño y análisis de investigaciones. Thomson Learning, Mexico. 2a. Edicion. 451-453.

Lever C. 1996. Naturalized Fishes of the World. Academic Press, California, USA. 312-316.

Miller RR, Minckley WL and Norris SN. 2005. Freshwater fishes of Mexico. University of Chicago Press. 425-428.

Miller RR. 1983. Checklist and key to the mollies of Mexico (Pisces: Poeciliidae: Poecilia, Subgenus Mollienesia). Copeia 817–822.

Nijholt I, Farchi N, Kye M, Sklan EH, Shoham S, Verbeure B, Owen D, Hochner B, Spiess J, Soreq H and Blank T. 2004. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Molecular Psychiatry. 9:174–183.

Ozcan EO and Demet U. 2007. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology. 23(10;48–55.

Pacheco J and Cabrera A. 1996. Efecto del uso de fertilizantes en la calidad del agua subterránea en el estado de Yucatán. Ingeniería Hidráulica en México. 11(1); 53-60.

Pan G and Dutta HM. 1998. The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass, Micropterus salmoides, by sublethal concentrations of diazinon. Environmental Research (Section A). 79(2):133-137.

Pope CN. 1999. Organophosphorus insecticides: do they all have the same mechanism of action? Journal of Toxicology and Environmental Health B. Critical Reviews. 2(2):161–181.

Raymond M. 1985. Présentation d’ un programme Basic d’ analyse log-probit pour micro-ordinateur. Cah. ORSTOM, sér. Ent. Med. et Parasitol. 23(2):117-121.

Rendon-Von Osten J, Ortiz-Arana A, Guilhermino L and Soares AM. 2005. In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere. 58(5):627-636.

Robertson JB and Mazzella C. 1989. Acute toxicity of the pesticide Diazinon to the freshwater snail Gillia altilis. Bulletin of Environmental Contamination and Toxicology. 42(3):320-324.

Saha S and Kaviraj A. 2003. Acute toxicity synthetic pyrethroid cypermethrin freshwater catfish, Heteropneustes fossilis (Bloch). Int. J. Toxicol., 22(4):325–328.

Santos-Vázquez AR. 1989. Determinación por cromatografía en capa fina de los residuos de pesticidas en el agua subterránea de la zona sur del estado de Yucatán. Tesis de Licenciatura. Facultad de Química, Universidad Autónoma de Yucatán. 31-47.

Segner H. 2004. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish. Altern Lab Anim., 32(4):375–382.

Sultatos LG. 1991. Metabolic activation of the organophosphorus insecticides chlorpyrifos and fenitrothion by perfused rat liver. Toxicology. 68(1):l-9.

Turner L. 2002. Diazinon, Analysis of Risks to Endangered and Threatened Salmon and Steelhead. Environmental Field Branch. Office of Pesticide Programs. 120-125.

Ucan-Marin F, Ernst W, O'Dor RK and Sherry J. 2012. Effects of food borne ivermectin on juvenile Atlantic salmon (Salmo salar L.): Survival, growth, behavior, and physiology. Aquaculture. 334–337;169-175.

Viran R, Erkoc FU, Polat H, Kocak O. 2003. Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicol. Environ. Safety. 55(1):82–85.

Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M and Kiss T. 2002. In vivo and in vitro effects of aluminium on the activity of mouse brain acetylcholinesterase, Brain Research Bulletin. 59(1); 41-45.

Zucker E. 1985. Hazard Evaluation Division - Standard Evaluation Procedure - Acute Toxicity Test for Freshwater Fish. US EPA. 540/9-85-006; 320-341.
Published
2013-07-16
How to Cite
Ucan-Marin, F., Cobos-Gasca, V., & Barrientos-Medina, R. C. (2013). Identification lethal and sub lethal concentrations (LC50) of Organophosphate (OP) pesticide Diazinon using an endemic species (Yucatan Molly, Poecilia velifera Regan 1914) as a potential biomonitor for the intensive agricultural activities of Southeaster. Journal of Research in Biology, 3(5), 993-1002. Retrieved from https://ojs.jresearchbiology.com/ojs1/index.php/jrb/article/view/308