Horizontal exchange of biological information and genesis of adaptive immune system

  • Petr Šíma University of Louisville, Department of Pathology, Louisville, KY 40202, USA
  • Vaclav Vetvicka Department of Immunology and Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, The Czech Republic
Keywords: Evolution, Genes, Bacteria, Vertebrates

Abstract

Multicellular organisms have never evolved alone. Coevolution has been accomplished by means of horizontal information transition. A wide row of hierarchized interspecies interactions simultaneously transmitting biological information had evolved in the past. In the present review, we summarize the current hypothesis about possible horizontal exchange of biological information and genesis of adaptive immune system.

References

Agrawal A, Eastman QM and Schatz DG. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 394(6695): 744-751.

Anderson NG. 1970. Evolutionary significance of virus infection. Nature. 227: (5262) 1346-1347.

Ardavín CF, Zapata AG, Villena A and Solas MT. 1982. Gut-associated lymphoid tissue (GALT) in the amphibian urodele Pleurodeles waltii. Journal of Morphology. 173(1): 35-41.

Avery OT, MacLeod CM and McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Journal of Experimental Medicine. 79(2): 137-158.

Basslinger J. 1858. Die Peyerische Inseln (Plaques) der Vögel. Z Wiss Zool. 58:299-300.

Befus AD, Johnston N, Leslie GA and Bienenstock J. 1980. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny and some functional characteristics of Peyer´s patches. Journal of Immunology. 125(6): 2626-2632.

Beltran P, Musser JM, Helmuth R, Farmer JJ, Frerichs WM, Wachsmuth IK, Ferris, McWhorter AC, Wells JG, Cravioto A and Selander RK. 1988. Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proceedings of the National Academy of Science USA. 85(20): 7753-7757.

Butzler J-P and Skirrow MB. 1979. Campylobacter enteritis. Clinical Gastroenterology. 8(3): 737-765.
Colbert EH. 1980. Evolution of the Vertebrates. John Wiley, New York.

de Bary A. 1879. Die Erscheinung der Symbiose, Vortrag auf der Versammlung der Deutschen Naturforscher und Ärtzte zu Cassel, Strassburg, Verlag von Karl J. Trubner, p. 1-30.

de Bary AH. 1869. Die Erscheinung der Symbiose. Naturforschung Versammlumgen, Cassel (Germany).

del Cacho E, Gallego M, Sanz A and Zapata AG. 1993. Characterization of distal lymphoid nodules in the chicken caecum. Anatomical Record. 237(4): 512-517.

Flajnik MF and Masahara M. 2010. Origin and evolution of the adaptive immune system: genetical pressure. Nature Reviews Genetics. 11(1): 47-59.

Glick B. 1978. The immune response of the chicken: Lymphoid development of the bursa of Fabricius and thymus and an immune response role of the gland of Harder. Poultry Science. 57(5): 1441-1444.

Glick B, Holbroock KA, Olah I, Perkin WD and Stinson R. 1981. An electron and light microspcopic study of the caecal tonsil. The basic unit of the caecal tonsil. Developmental and Comparative Immunology. 5:95-104.

Hacker J and Carniel E. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Reports 2(5): 376-381.

Hansen JD and McBlane JF. 2000. Recombination-activating genes, transposition, and the lymphoid-specific combinatorial immune system: a common evolutionary connection. Current Topics in Microbiology and Immunology. 248:11-135.

Hart S, Wrathmell AB, Harris JE and Grayson TH. 1988. Gut immunology in fish: a review. Developmental and Comparative Immunology. 12(3): 453-480.

Hiom K, Melek M and Gellert M. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell. 94(4): 463-470.

Jeurissen SHM, Janse EM, Koch G and De Boer GF. 1989. Postnatal development of mucosa associated lymphoid tissue in chickens. Cell and Tissue Research. 258(1): 119-124.

Leclerc M, Arneodo V, Legac E, Bajelan M and Vaugier G. 1993. Identification of T-like and B-like lymphocyte subsets in sea star Asterias rubens by monoclonal antibodies to human leucocytes. Thymus. 21: (3) 133-139.

Lee C. 1996. Pathogenicity islands and evolution of bacterial pathogens. Infectious Agents and Diseases. 5: (1) 1-7.

Levine MM, Kaper JB, Black RE and Clements ML. 1983. New knowledge on pathogenesis of bacterial enteric infection as applied to vaccine development. Microbiological Reviews. 47(4): 510-550.

Margulis L. 1993. Symbiosis in Cell Evolution. W. H. Freeman, New York.

Merezhkowsky CS. 1920. La plante considérée comme un complexe symbiotique. Bulletin Soc Sci Natur l´Quest France. 6:17-98.

Millar DA and Ratcliffe NA. 1989. The evolution of blood cells: Facts and enigmas. Endeavour, New Series. 13(2): 72-77.

Orgel LE. 1973. The Origins of Life, Molecules and Natural Selection. Chapman and Hall, London, 4 (1): p.237.

Prusiner SB. 1994. Molecular biology and genetics of prion diseases. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 343(1306): 447-463.

Sakano H, Huppi K, Heinrich G and Tonegawa S. 1979. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 280:288-294.

Sawada T, Zhang J and Cooper EL. 1993. Classification and characterization of hemocytes in Stealy calva. Biological Bulletin. 184(1): 87-96.

Schmidt H and Hensel M. 2004. Pathogenicity islands in bacterial pathogenesis. Clinical Microbiological Reviews. 17(1): 14-56.

Silvestri G and Baldassarre F. 2000. Prion diseases: a typical Kuhnian abnormality in a molecular paradigm. Medical Hypotheses. 54(1): 69-71.

Šíma P and Slípka J. 1995. The spleen and its coelomic and enteric history. In: Mestecky J, Russel MW, Jackson S, Michalek SM, Tlaskalová-Hogenová H and Šterzl J. (Eds): Advances in Mucosal Immunology. Part A. Plenum Publ. Corp, New York, p. 331-334.

Solas MT and Zapata AG. 1980. Gut-associated lymphoid tissue in reptiles: intraepithelial cells. Developmental and Comparative Immunology. 4(1): 87-99.

Syvanen M. 1994. Horizontal gene transfer: evidence and possible consequences. Annual Review of Genetics. 28: 237-264.

Tanaka Y, Saito Y and Gotoh H. 1981. Vascular architecture and intestinal hemopoietic nests of two cyclostomes, Eptatretus burgeri and ammocoetes of Entosphenus reissneri. A comparative morphological study. Journal of Morphology. 170(1): 71-93.

von Bertalanffy L. 1950. Biophysik des Fliessgleichgewichts, Braunschweig.

Wong WC. 1972. Lymphoid aggregations in the oesophagus of the toad (Bufo melanodiscus). Acta Anatomica. 83(3): 461-478.

Zapata AG. 1981. Ultrastructure of elasmobranch lymphoid tissue. 2. Leydig´s and epigonal organs. Developmental and Comparative Immunology. 5(1): 43-52.

Zapata AG and Cooper EL. 1990. The immune system: comparative histophysiology. John Wiley and Sons. Ltd., Baffins Lane, Chichester, England.

Zapata AG and Solas MT. 1979. Gut-associated lymphoid tissue in reptilia: structure of mucosal accumulations. Developmental and Comparative Immunology. 3:477-487.
Published
2015-01-29
How to Cite
Šíma, P., & Vetvicka, V. (2015). Horizontal exchange of biological information and genesis of adaptive immune system. Journal of Research in Biology, 5(1), 1619-1626. Retrieved from https://ojs.jresearchbiology.com/ojs1/index.php/jrb/article/view/370